Determinants of consumer adoption of biometric technologies in mobile financial applications
DOI:
https://doi.org/10.18559/ebr.2024.1.1019Keywords:
biometric technologies, mobile payments, mobile banking, personal finance apps, technology acceptance, FinTech, COVID-19 pandemicAbstract
This study aims to identify what determines the use of biometric technologies in the financial applications of banks and FinTechs. The analysis uses data from a survey of 1,000 adult Polish residents. The estimated logit model indicates that the probability of using biometric solutions decreases with age and increases with the level of education and technological sophistication relating to personal innovativeness, experience with biometric technology, and the use of digital technology in both financial and non-financial areas. The work identifies the COVID-19 pandemic as a factor accelerating the adoption of biometric solutions and fostering awareness of the threat of digital technologies invading respondents’ privacy. The study demonstrates the positive impact of trust that phone manufacturers ensure the security of stored funds and data processing on the acceptance of biometric solutions in financial services. This relationship underpins the recommendation to financial institutions in the field of promoting biometric technologies.
Downloads
References
Al-Janahi, N, Abd-El-Barr, M, & Qureshi K (2021). Evaluation and performance comparison of a model for adoption of biometrics in online banking. Kuwait Journal of Science, 48(2). https://doi.org/10.48129/kjs.v48i2.8800
View in Google Scholar
DOI: https://doi.org/10.48129/kjs.v48i2.8800
Amankwaa, A., & McCartney, C. (2020). Gaughran vs the UK and public acceptability of forensic biometrics retention. Science and Justice, 60(3), 204–205. https://doi.org/10.1016/j.scijus.2020.04.001
View in Google Scholar
DOI: https://doi.org/10.1016/j.scijus.2020.04.001
Agidi, R. Ch. (2018). Biometrics: The Future of Banking and Financial Service Industry in Nigeria, International Journal of Electronics and Information Engineering, 9(2), 91-105.
View in Google Scholar
Alpar, O., Biometric touchstroke authentication by fuzzy proximity of touch locations. Future Generation Computer Systems, 86, 71–80. https://doi.org/10.1016/j.future.2018.03.030
View in Google Scholar
DOI: https://doi.org/10.1016/j.future.2018.03.030
Baichoo, S., Khan, M.H.-M., Bissessur, P., Pavaday, N., Boodoo-Jahangeer, N., & Purmah, N.R. (2018). Legal and ethical considerations of biometric identity card: Case for Mauritius. Computer Law & Security Review, 34(6), 1333-1341. https://doi.org/10.1016/j.clsr.2018.08.010
View in Google Scholar
DOI: https://doi.org/10.1016/j.clsr.2018.08.010
Bauer, H.H., Barnes, S.J., Reichardt, T., & Neumann, M.M. (2005). Driving consumer acceptance of mobile marketing: A theoretical framework and empirical study. Journal of Electronic Commerce Research, 6(3), 181–192.
View in Google Scholar
Breward, M., Hassanein, K., & Head M. (2017). Understanding Consumers’ Attitudes Toward Controversial Information Technologies: A Contextualization Approach. Information Systems Research, 28(4), 760-774. https://doi.org/10.1287/isre.2017.0706
View in Google Scholar
DOI: https://doi.org/10.1287/isre.2017.0706
Byun, S., & Byun, S-E. (2013). Exploring perceptions toward biometric technology in service encounters: a comparison of current users and potential adopters. Behaviour & Information Technology, 32(3), 217–230. https://doi.org/10.1080/0144929X.2011.553741
View in Google Scholar
DOI: https://doi.org/10.1080/0144929X.2011.553741
Carpenter, D., McLeod, A., Hicks, Ch., & Maasber, M. (2018). Privacy and biometrics: An empirical examination of employee concerns. Information Systems Frontiers, 20, 91–110. https://doi.org/10.1007/s10796-016-9667-5
View in Google Scholar
DOI: https://doi.org/10.1007/s10796-016-9667-5
Cramer J. S. (2003). Logit models from economics and other fields, Cambridge University Press. Cambridge.
View in Google Scholar
DOI: https://doi.org/10.1017/CBO9780511615412
Dang, V.T., Nguyen, N., Nguyen, H.V., Nguyen, H., Van Huy, L., Tran, V.T., & Nguyen, T.H. (2022). Consumer attitudes toward facial recognition payment: an examination of antecedents and outcomes. International Journal of Bank Marketing, 40(3), 511-535. https://doi.org/10.1108/IJBM-04-2021-0135
View in Google Scholar
DOI: https://doi.org/10.1108/IJBM-04-2021-0135
Dhrymes P. (2017). Introductory Econometrics. Springer Cham . https://doi.org/10.1007/978-3-319-65916-9
View in Google Scholar
DOI: https://doi.org/10.1007/978-3-319-65916-9
Fouad, K.M., Hassan, B.M., & Hassan, M.F. (2016). User Authentication based on Dynamic Keystroke Recognition. International Journal of Ambient Computing and Intelligence, 7(2), 1-32.
View in Google Scholar
DOI: https://doi.org/10.4018/IJACI.2016070101
Gomez-Barrero, M., & Galbally, J. (2020). Reversing the irreversible: A survey on inverse biometrics. Computers & Security, 90, 101700. https://doi.org/10.1016/j.cose.2019.101700
View in Google Scholar
DOI: https://doi.org/10.1016/j.cose.2019.101700
Hino H. (2015). Assessing Factors Affecting Consumers' Intention to Adopt Biometric Authentication Technology in E-shopping. Journal of Internet Commerce, 14(1), 1-20. https://doi.org/10.1080/15332861.2015.1006517
View in Google Scholar
DOI: https://doi.org/10.1080/15332861.2015.1006517
Huterska, A., Piotrowska, A.I., & Szalacha-Jarmużek, J. (2021). Fear of the COVID-19 Pandemic and Social Distancing as Factors Determining the Change in Consumer Payment Behavior at Retail and Service Outlets. Energies, 14, 4191. https://doi.org/10.3390/en14144191
View in Google Scholar
DOI: https://doi.org/10.3390/en14144191
Jeddy, N., Radhika, T., & Nithya S. (2017). Tongue prints in biometric authentication: A pilot study. Journal of Oral and Maxillofacial Pathology, 21(1), 176‑179.
View in Google Scholar
DOI: https://doi.org/10.4103/jomfp.JOMFP_185_15
Jünger, M., & Mietzner, M. (2020). Banking goes digital: The adoption of FinTech services by German households. Finance Research Letters, 34, https://doi.org/10.1016/j.frl.2019.08.008
View in Google Scholar
DOI: https://doi.org/10.1016/j.frl.2019.08.008
Kagerbauer, M., Manz, W., & Zumkeller, D. (2013). Analysis of PAPI, CATI, and CAWI Methods for a Multiday Household Travel Survey. In J. Zmud, M. Lee-Gosselin, M. Munizaga, & J.A. Carrasco (Eds.), Transport Surveys Methods: Best Practice for Decision Making (pp. 289–304). Emerald Group Publishing Limited: Bingley.
View in Google Scholar
DOI: https://doi.org/10.1108/9781781902882-015
Kim, M., Kim, S., & Kim, J. (2019). Can mobile and biometric payments replace cards in the Korean offline payments market? Consumer preference analysis for payment systems using a discrete choice model. Telematics and Informatics, 38, 46–58. https://doi.org/10.1016/j.tele.2019.02.003
View in Google Scholar
DOI: https://doi.org/10.1016/j.tele.2019.02.003
Kindt, E.J. (2018). Having yes, using no? About the new legal regime for biometric data. Computer law & security review, 34, 523–538. https://doi.org/10.1016/j.clsr.2017.11.004
View in Google Scholar
DOI: https://doi.org/10.1016/j.clsr.2017.11.004
Kochaniak, K., & Ulman, P. (2020). Risk-Intolerant but Risk-Taking—Towards a Better Understanding of Inconsistent Survey Responses of the Euro Area Households. Sustainability, 12, 6912. https://doi.org/10.3390/su12176912
View in Google Scholar
DOI: https://doi.org/10.3390/su12176912
Kufel T. (2011). Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu Gretl. Wydawnictwo Naukowe PWN. Warszawa.
View in Google Scholar
Kumari, P., & Seeja, K.R. (2022). Periocular biometrics: A survey. Journal of King Saud University - Computer and Information Sciences Journal of King Saud University - Computer and Information Sciences, 34(4), 1086-1097.
View in Google Scholar
DOI: https://doi.org/10.1016/j.jksuci.2019.06.003
Lumini, A., & Nanni, L. (2017). Overview of the combination of biometric matchers.
View in Google Scholar
Information Fusion, 33, 71-85. http://dx.doi.org/10.1016/j.inffus.2016.05.003
View in Google Scholar
DOI: https://doi.org/10.1016/j.inffus.2016.05.003
Maddala, G.S. (1992). Introduction to Econometrics. 2nd ed. Macmillan Publishing Company.
View in Google Scholar
Miltgen, C.L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103–114. http://dx.doi.org/10.1016/j.dss.2013.05.010
View in Google Scholar
DOI: https://doi.org/10.1016/j.dss.2013.05.010
Morosan, C., (2011). Customers' adoption of biometric systems in restaurants: an extension of the technology acceptance model. Journal of Hospitality Marketing & Management, 20(6), 661–690. https://doi.org/10.1080/19368623.2011.570645
View in Google Scholar
DOI: https://doi.org/10.1080/19368623.2011.570645
Mróz-Gorgoń, B., Wodo, W., Andrych, A., Caban-Piaskowska, K., & Kozyra, C. (2022). Biometrics Innovation and Payment Sector Perception. Sustainability, 14, 9424. https://doi.org/10.3390/su14159424
View in Google Scholar
DOI: https://doi.org/10.3390/su14159424
Nguyen, K., Fookes, C., Sridharan, S., Tistarelli, M., & Nixon, M. (2018). Super-resolution for biometrics: A comprehensive survey. Pattern Recognition, 78, 23–42. https://doi.org/10.1016/j.patcog.2018.01.002
View in Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2018.01.002
Piotrowski, D. (2022). ICTs in the banking sector in the times of the COVID-19 pandemic: the customer’s perspective. Ekonomia i Prawo. Economics and Law, 21(3), 603-622. https://doi.org/10.12775/EiP.2022.032
View in Google Scholar
DOI: https://doi.org/10.12775/EiP.2022.032
Prince, J. T., & Wallsten, S. (2022). How much is privacy worth around the world and across platforms? Journal of Economics & Management Strategy, 31(4). https://doi.org/10.1111/jems.12481
View in Google Scholar
DOI: https://doi.org/10.1111/jems.12481
Rio, J.S., Moctezuma, D., Conde, C., de Diego, I. M., & Cabello, E. (2016). Automated border control e-gates and facial recognition systems. Computers & Security, 62, 49–72. http://dx.doi.org/10.1016/j.cose.2016.07.001
View in Google Scholar
DOI: https://doi.org/10.1016/j.cose.2016.07.001
Sadhya, D., & Singh, S.K. (2017). Providing robust security measures to Bloom filter based biometric template protection schemes. Computers & Security, 67, 59–72. http://dx.doi.org/10.1016/j.cose.2017.02.013
View in Google Scholar
DOI: https://doi.org/10.1016/j.cose.2017.02.013
Sanchez-Reillo, R., Ortega-Fernandez, I., Ponce-Hernandez, W., & Quiros-Sandoval, H.C. (2019). How to implement EU data protection regulation for R&D in biometrics. Computer Standards & Interfaces, 61, 89–96. https://doi.org/10.1016/j.csi.2018.01.007
View in Google Scholar
DOI: https://doi.org/10.1016/j.csi.2018.01.007
Singh, M., Singh, R., & Ross, A. (2019). A comprehensive overview of biometric fusion. Information Fusion, 52, 187–205. https://doi.org/10.1016/j.inffus.2018.12.003
View in Google Scholar
DOI: https://doi.org/10.1016/j.inffus.2018.12.003
Sleiman, K.A.A., Juanli, L., Lei, H.Z., Rong, W., Yubo, W., Li, S., Cheng, J., & Amin, F. (2023). Factors that impacted mobile-payment adoption in China during the COVID-19 pandemic. Heliyon, 9(5), e16197. https://doi.org/10.1016/j.heliyon.2023.e16197
View in Google Scholar
DOI: https://doi.org/10.1016/j.heliyon.2023.e16197
Soh, K. L.; Wong, W. P., & Chan, K. L. (2010). Adoption of Biometric Technology in Online Applications. International Journal of Business and Management Science, 3(2), 121-146.
View in Google Scholar
Štitilis, D., & Laurinaitis M. (2017). Treatment of biometrically processed personal data: Problem of uniform practice under EU personal data protection law. Computer Law & Security Review, 33, 618–628. http://dx.doi.org/10.1016/j.clsr.2017.03.012
View in Google Scholar
DOI: https://doi.org/10.1016/j.clsr.2017.03.012
Sun, Y., Li, H., & Li, N. (2023). A novel cancelable fingerprint scheme based on random security sampling mechanism and relocation bloom filter. Computers & Security, 125, 103021. https://doi.org/10.1016/j.cose.2022.103021
View in Google Scholar
DOI: https://doi.org/10.1016/j.cose.2022.103021
Tassabehji, R., & Kamala M.A. (2012). Evaluating biometrics for online banking: The case for usability. International Journal of Information Management, 32(5), 489–494. http://dx.doi.org/10.1016/j.ijinfomgt.2012.07.001
View in Google Scholar
DOI: https://doi.org/10.1016/j.ijinfomgt.2012.07.001
Tovarek, J., Voznak, M., Rozhon, J., Rezac, F., Safarik, J., & Partila, P. (2018). Different Approaches for Face Authentication as Part of a Multimodal Biometrics System. Advances in Electrical and Electronic Engineering, 16(1), 118-124. DOI:10.15598/aeee.v16i1.2547
View in Google Scholar
DOI: https://doi.org/10.15598/aeee.v16i1.2547
Wang, J. S. (2021). Exploring biometric identification in FinTech applications based on the modified TAM. Financial Innovation, 7(42). https://doi.org/10.1186/s40854-021-00260-2
View in Google Scholar
DOI: https://doi.org/10.1186/s40854-021-00260-2
Wang, K., Yang, G., Huang, Y., & Yin, Y. (2020). Multi-scale differential feature for ECG biometrics with collective matrix factorization. Pattern Recognition, 102, 107211. https://doi.org/10.1016/j.patcog.2020.107211
View in Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2020.107211
Wang, M., Hu, J., & Abbass, H. A. (2020). BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs. Pattern Recognition, 105, 107381. https://doi.org/10.1016/j.patcog.2020.107381
View in Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2020.107381
Yu, J., Sun, K., Gao, F., & Zhu, S. (2018). Face biometric quality assessment via light CNN. Pattern Recognition Letters, 107, 25–32. http://dx.doi.org/10.1016/j.patrec.2017.07.015
View in Google Scholar
DOI: https://doi.org/10.1016/j.patrec.2017.07.015
Unar, J.A., Seng, W.C., & Abbasi, A. (2014). A review of biometric technology along with trends and prospects. Pattern Recognition, 47, 2673–2688. http://dx.doi.org/10.1016/j.patcog.2014.01.016
View in Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2014.01.016
Zhang, Y., Huang, Y., Wang, L., & Yu S. (2019). A comprehensive study on gait biometrics using a joint CNN-based method. Pattern Recognition, 93, 228–236. https://doi.org/10.1016/j.patcog.2019.04.023 0031
View in Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2019.04.023
Zhang, D., Liu, Z., & Yan J. (2010). Dynamic tongueprint: A novel biometric identifier. Pattern Recognition, 43(3), 1071–1082. https://doi.org/10.1016/j.patcog.2009.09.002 10
View in Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2009.09.002
Zhao, Y., & Bacao, F. (2021). How Does the Pandemic Facilitate Mobile Payment? An Investigation on Users’ Perspective under the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18, 1016. https://doi.org/10.3390/ijerph18031016
View in Google Scholar
DOI: https://doi.org/10.3390/ijerph18031016
Downloads
Published
Versions
- 2024-10-10 (2)
- 2024-03-29 (1)
Issue
Section
License
Copyright (c) 2024 Anna Iwona Piotrowska

This work is licensed under a Creative Commons Attribution 4.0 International License.
