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Local stability of the competitive economy 
with relative prices and discrete time

Abstract: Th e paper presents a simple proof of a local asymptotical stability of the non-lin-
ear stationary Walrasian system with discrete time and relative prices. Th e proof uses a no-
tion of global asymptotical stability in zero linear approximation of the non-linear system 
under stationary conditions.
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1. Walrasian system with relative prices

Stationary Walrasian system in a continuous version is a system of diff erential 
equations of the dynamics of prices in the n-products economy [Hansen (1976), 
Intriligator (1971), Karlin (1959), McKenzie (2002), Takayama (1985)]:

 p t f p t( ) ( )= ( )σ , (1)

where
t – variable continuous of time, t R∈ = +∞+

1 0[ , ),
n – number of goods (produced and/or used),
p t p t p tn( ) ( ),..., ( )= ( )1  – vector of goods prices at moment t,
p t p t p tn( ) ( ),..., ( )= ( )1  –derivative trajectory of prices at moment t,
f p t f p t f p tn( ) ( ) ,..., ( )( ) = ( ) ( )( )1  – function of the excess demand for goods at mo-
ment t,

f p t f p t f p td s( ( )) ( ( )) ( ( ))= − ,

f p t f p t f p td d
n
d( ) ( ) ,..., ( )( ) = ( ) ( )( )1  – function of the aggregated demand for goods 

at moment t,
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f p t f p t f p ts s
n
s( ) ( ) ,..., ( )( ) = ( ) ( )( )1  – function of the aggregated supply of goods at 

moment t,
σ – positive rate (index) of proportionality (coeffi  cient of prices reaction to changes 
in demand and/or supply).

Demand and supply of goods depend on current prices; on the other hand, they 
determine the directions and speed of their changes in the future. If we replace in (1) 
derivative p t( ) by increase of Δ p t p t p t( ) ( ) ( )= + −1  and assume that the time variable 
t is an integer, t = 0,1,..., then we have a discrete equivalent to the system (1):

 Δp t f p t( ) ( )= ( )  (2)

which in literature is oft en presented in an equivalent recursive form

 p t p t( ) ( )+ = ( )1 ,  (3)

where

p t p t f p t( ) ( ) ( )( ) = + ( ).

We assume that the vector function of surplus demand f(p), we assume that 
[8, 9]:
(i) f C Rn∈ ( )+

1 0\{ } ,
(ii) ∀ > ∀ > =( )0 0, ( ) ( )p f p f p  (excess demand depends on the structure of 
prices, not on their absolute levels).

Prices in economy, true to type (ii), are defi ned with respect to structure preci-
sion, it means that in Walras economy the same excess demand depends on pric-
es  p p pn= ( ) >1 0,...,  and prices p p pn= ( )1,..., , where λ is a positive number. 
Particularly,

( )1 ˆ( ) ,1
n

f p f p f p
p

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
,

where 11ˆ ,..., n

n n

ppp
p p

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

We take an n-product unit as numéraire – expressing other goods prices in it. 
Th e prices ( )1 1

ˆ ˆ ˆ,..., np p p −=  are called relative ones, and prices p p pn= ( )1,...,  are 
called absolute ones.

Stationary continuous Walrasian system with relative prices takes the form of 
the following system of n-1 diff erential equations:

 ( )1 1
ˆ ˆ ˆ,..., np p p −=   (4)
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of relative prices dynamics. In a discrete version we have a recursive form

 ( )ˆ ˆˆ( 1) ( )p t p tφ+ = ,  (5)

where

 ( )ˆˆ ˆ ˆˆ( ) ,1p p f pσφ = + ,  (6)

( )1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ( ,1) ( ,1),..., ( ,1), ( ) ( ),..., ( )n nf p f p f p p p pφ φ φ− −= = .

Th ere are two possible interpretations of Walrasian system with relative prices. 
According to the fi rst one, whose widest equation system of relative prices dynam-
ics (4) (adequately (5) refers not to (1) (adequately (3). In this interpretation the 
Walrasian system with relative prices, exists autonomously, independently of the ab-
solute prices; n – product is meant as money (an exchangeable good, like for example 
gold) and varies from other goods in economy which means that always ˆ ( ) 1np t ≡ , 
but not necessarily ( )ˆ( ),1 0nf p t ≡  (is not subject to classical rules of the market).

In the second (limited) interpretation of the Walrasian system with relative pric-
es described by the equation (4) (adequately (5)) the system is a specifi c case of the 
Walrasian system with absolute prices, described by system (1) (adequately (3)) and 
because ˆ ( ) 1np t ≡ , so ˆ ( ) 1np t ≡ , which means that ( )ˆ( ),1 0nf p t ≡  which means that 
demand for money is always equal to its supply. Th at means that banks are active 
on money market..

Th e initial relative prices are positive,

 0ˆ ˆ(0) 0p p= >   (7)

△ Defi nition 1. Th e positive solution of system (4) on half-axis of time R+
1 (adequately: 

the positive solution of system (5) on the set of natural numbers N) under initial con-
dition (7) we defi ne as ( )0ˆ ,p ∞  – feasible trajectory of relative prices.

▲
Th e existence of the feasible prices trajectories (of relative prices) are to be ac-

quainted with in for example [Karlin (1959), Panek (2003)]. Further we identify 
the equilibrium in the stationary Walrasian system with relative prices, ˆ 0p >  in the 
equilibrium the demand for goods equals their supply. (See the defi nition below).

△ Defi nition 2. Walrasian system with relative prices ˆ 0p >  is in equilibrium, if

 ( )ˆˆ ,1 0f p = .  (8)

▲
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Prices p̂ are called equilibrium (relative) prices. Equilibrium prices p̂ are the sin-
gular solution (singular point) of system (4) in continuous time(and (5) in discrete 
time).

If in (7) we take that 0 ˆp̂ p= , the solution of system (4) (adequately (5)) with ini-
tial condition (7) is a trajectory of prices ˆˆ( )p t p≡ . In a limited interpretation of the 
Walrasian system with relative prices – where the equation system (4) (adequately 
(5)) is a particular case of system (1) (adequately (3)) – the positive homogeneity 
of 0 degree function of the surplus demand f(p) implies that if ˆ 0p >  is a vector of 
equilibrium (relative) prices, then every vector

ˆ( ,1), 0p pλ λ= >

represents equilibrium prices. Th at is what we mean in mathematical economy, writ-
ing that equilibrium prices in Walrasian System create half line

P p= >{ }0 ,

in the space of prices Rn
+ , (the so-called radius of equilibrium prices). On the other 

hand, if p P∈  is any equilibrium, prices vector, by which in the system (1) f p( ) = 0, 
then 

p̂ = p
p

p
pn

n

n

1 1,..., −⎛

⎝
⎜

⎞

⎠
⎟

is the equilibrium relative prices vector, by which in system (4) ( )ˆˆ ,1 0f p = .

2. Local stability of Walrasian system with continuous time

Let ˆ 0p >  be a vector of equilibrium relative prices in the system (4). From the Taylor’s 
formula, limited only to the linear element, we receive a linear function approxima-
tion of surplus demand ( )ˆ ˆ,1f p  in the neighborhood of equilibrium prices:

 ( ) ( )
ˆˆ

ˆ ˆ( ,1)ˆ ˆˆ ˆˆ ˆ( ,1) ,1 ˆ
p p

f pf p f p p p
p

=

∂
= + −

∂
,  (9)

and therefore from (4) (considering that ( )ˆˆ ,1 0f p = :

 ( ) ( )t F t= ,  (10)
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where

 ˆˆ( ) ( ) ,t p t pπ = −  
ˆˆ

ˆ
ˆ

p p

fF
p

=

∂
=
∂

.  (11)

Equation system (10) is the linear approximation of the nonlinear system (4) in 
the neighborhood of equilibrium prices p̂.
△ Defi nition 3. (i) Walrasian system with continuous time (accordingly with discrete 
time) and relative prices is called local, asymptotically stable, if

( ) ( )0 ˆ ˆˆ ˆ0 ( )
t

p U p p t pεε∃ ∀> ∈ → ,

where ˆ( )p t  is ( )0ˆ ,p ∞  – feasible trajectory of relative prices – positive solution of the 
system (4) (adequately system (5))- under initial condition (7),

( ) 1ˆ ˆˆ nU p p R p pε ε−
+= ∈ − <{ }.

(ii) Linear system (10) is called globally, asymptotically stable in 0, if 
its every solution with any vector

 ( )0 0 1= ∈ −Rn   (12)

converges to 0 as t →+∞.

□ Th eorem 1. [1, 4, 7, 8]. (i) Walrasian system with continuous time and relative 
prices is local asymptotically stable in the neighborhood of equilibrium prices ˆ 0p >  if 
and only, if its linear approximation (10) is globally asymptotically stable in 0.

(ii) Linear system (10) is globally asymptotically stable in 0 if and only, if all of 
eigenvalues of matrix F have negative real part.

■
We call matrix F of system (10) stable, if real parts of all eigenvalues are nega-

tive. In consideration therefore, a condition of at least local asymptotical stability of 
the Walrasian system with relative prices is stability of matrix F of linear approxi-
mation (10).

If, particularly, all eigenvalues of matrix F are real, then the Walrasian system with 
relative prices is local asymptotically stable if matrix F is negative defi nite. Indeed, 
let λ be (real) eigenvalue of matrix F and γ ≠ 0 an equivalent (right) eigenvector:

Fγ = λγ.
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Th en, T F = 〈 〉 <, 0, which means γ < 0. Th e eigenvalue of matrix F was 
freely chosen, therefore all of its own values are negative, which means that system 
(10) is global asymptotically stable in 0. Hence, according to theorem 1, an exit sys-
tem (4) is at least local asymptotically stable.

3. Local stability of Walrasian system with discrete time

Th e linear approximation of (non-linear) recurrences equations system of the dy-
namics of relative prices (5) we call linear system

 ( ) ( )t t+ =1 ,  (13)

where, as above, ˆˆ( 1) ( )t p t pπ + = −  and (see (6), (11)):

 
ˆˆ ˆˆ

ˆˆ
ˆ ˆ

p p p p

fE E F
p p
ϕφ σ σ

= =

∂∂
= = + = +
∂ ∂

,  (14)

E is unity matrix (n–1, n–1) . Defi nition 3 (2i) of global asymptotical stability in 0 
of linear system (aft er we replace the system of diff erential equations (10), by recur-
rence equations system (13)) is still actual.

□ Th eorem 2. [5] (i). Th e discrete Walrasian system with relative prices is locally as-
ymptotically stable in the neighborhood of equilibrium prices ˆ 0p >  if and only, if its 
linear approximation (13) is globally asymptotically stable in 0.

(ii). Linear system (13) is globally asymptotically stable in 0 if and 
only if all eigenvalues of matrix φ have modules smaller than 1.

■
We call stable such matrix φ of the discrete system (13), where all eigenvalues 

(real or complex) have module smaller than 1.

□ Th eorem 3. Matrix F of continuous system (10) is stable, if and only, if there exists 
such a number > 0, that ∀ ∈( )0,  matrix φ of discrete system (13) is stable.
Proof. (⇒) If matrix F is stable, then its every eigenvalue has a negative real part. 
Let j a bi= +  be the j-eigenvalue of matrix F, to which corresponds (right) eigen-
vector γj:

F j
j

j= .

review 15.indb   54review 15.indb   54 2008-12-12   14:34:312008-12-12   14:34:31



55

Hence and from the defi nition φ (see (14)) we have:

j
j

j= ,

where

j j a bi a b a= + = + + = +( ) + +1 1 2 12 2 2( ) .

Because matrix F is stable, therefore a < 0. Th en

j < 1

for 0 < < j , where j
a

a b
= −

+
>2 02 2 . It is suffi  cient to take = min

j j.

(⇐)* Assuming that ∃ > ∀ ∈( ) = ⇒ <( )0 0 1, yσ σ σ φγ β β ,

where: = +E F , = +c di. Th en

F = −( )1

or

F = ,

where = −1. Because = + <c d2 2 1, therefore c < 1, what means that

re re= − = − <1 1 0c .

■
If eigenvalues of matrix F are diff erent, and have negative real parts, then in the 

discrete system of equations of relative prices dynamics (5) it is enough to take a 
suffi  ciently small value of σ indicator, which shows the reaction of prices to demand 
and supply, and the system will be locally stable.

4. Example

Let us consider two-products Walrasian system with discrete time and relative prices 
( )1 2

ˆ ˆ ˆ,p p p= , when its dynamics is described by a pair of recursive equations:
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2
1 1 1

1

ˆ ( )ˆ ˆ ˆ( 1) ( ) ( )ˆ ( )
p tp t p t A p t
p t

σ
⎡ ⎤

+ = + −⎢ ⎥
⎣ ⎦

,

  (15)
1

2 2 2
2

ˆ ( )ˆ ˆ ˆ( 1) ( ) ( )ˆ ( )
p tp t p t B p t
p t

σ
⎡ ⎤

+ = + −⎢ ⎥
⎣ ⎦

,

with positive parameters A, B, σ. Th e equilibrium prices form a vector

 2 23 3ˆ , 0p A B B A= >( ) .  (16)

Matrix

F

A
B

B
A

=
−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2

2

3

3

of this system (see (11)) has two negative (real) eigenvalues λ1 = –1 and λ1 = –3, 
therefore matrix

= + =
−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

E F

A
B

B
A

1 2

1 2

3

3

(see (13)) has also two eigenvalues: 1 1= − , 2 1 3= − ,

1 21 1 0 2
3

< < ∈⎛
⎝
⎜

⎞
⎠
⎟and for ,β β σ .

Linear approximation of non-linear system (15) in the neighborhood of the equi-
librium prices vector (16) forms the equation system:

1 1
3

21 1 2( ) ( ) ( ) ( )t t A
B

t+ = − + ,

  (17)

2
3

1 21 1 2( ) ( ) ( ) ( )t B
A

t t+ = + − ,

whose general solution is:
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( ) ( ) ( )t c
A

B
c

A

B
t t=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − +

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −1

3

3 2

3

3
1 1 3

(c1, c2 – any constant values) and ( )t
t

→0, when ∈⎛
⎝
⎜

⎞
⎠
⎟0 2

3
,σ . If we take from (17)

c
A B

c
B A1

1
0

3
2
0

3 2
2
0

3
1
0

3

1
2

1
2

= +⎡
⎣⎢

⎤
⎦⎥

= −⎡
⎣⎢

⎤
⎦⎥

,

we obtain the particular solution of system (17) which fulfi lls the initial condition 
(12).
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